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Chunking for NER

* Chunking, means finding parts of text
= Often used in Named Entity Recognition (NER)
- E.g. person names in the text
= Other tasks like
» Negation range
- Noun phrases



Chunkmg for NER

The University of Sheffield is a public research university in Sheffield .

| Orgnisation |




Chunking for NER

« Chunking = Special classification task
 |dentify BIO labels of tokens

= B= Beginning of the entity

= | = Inside of the entity

= O = OQutside of the entity

The University of Sheffield is a public research university in Sheffield .

| Orgnisation |
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Classification
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Dog Classification
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Dog Classification
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Dog Classification
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Dog Classification
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BIO Classification
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Sequence Classification

« Consider previous/after tokens as features

The University of Sheffield is a public research university in Sheffield .
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University of Sheffield NLP
Sequence Classification
« Consider previous/after tokens as features
« Use sequence classification algorithms
= Conditional random fields VoD Y y)
= Recurrent Neural Network ()
= Attention mechanism 5

x(t-1) X X(t+1)

The University of Sheffield is a public research university in Sheffield .
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Chunking Practical Exercise

« Materials for this exercise are in the folder called
“chunking-hands-on”

* You might want to start by closing any applications and
corpora from the previous exercise, so we have a fresh
start

* Finding Person Mentions using Chunking Training and
Application PRs
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Load the corpus

.Create corpora for training and testing, with sensible names

.Populate them from the training and testing corpora you
have in your chunking hands on materials

.Open a document and examine its annotation
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Examining the corpus

* The corpus contains an annotation set called “Key”,
which has been manually prepared
« Within this annotation set are annotations of types

M« LN 11

“Date”, “Location”, “Money”, “Organization” and so forth
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 As previously, if we run
ANNIE on the corpus, we
have more annotations to
work with

» S0 start by loading ANNIE
as the basis for your
application

« Again, we don't need the
NE transducer or
orthomatcher
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Corpus: |<none>

Runtime Parameters for the "Annotation Set Transfer 00036" Annotation Set Transfer:

(Name Type  J|Required)\Value

{2) annotationTypes ArrayList 0 \
{2) copyAnnotations Boolean |v/ ifalse ]
{(2) inputASName String ‘, i
{2) outputASName String \

{2) tagASName String | Original markups

{2) textTagName String \
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Run this Application

Serial Application Editor | Initialisation Parameters | About...

)] »
nnotation Set Transfer 00036 loaded in 0.001 seconds

e Again, we need

an Annotation
Set Transfer, so
create and add
one

Then create
training chunking
PR
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Annotation Set Transfer

« We'll use the annotation set transfer to copy the Person
and Organization annotations up to the default
annotation set, where we can learn them

* Go ahead and set up your AST now

* Be sure to copy them, not move them!
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(?) algorithmParameters |String

(,7) classAnnotationTypes|List [Person, Organization ]

(?) dataDirectory URL / file:/home/genevieve/svn/sale/talks/gate-course-jun18/module-5-ml/chunki
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Chunking training parameter-@

* For classification, the class to learn is in a feature on the
instance, is specified to the PR in the targetFeature
parameter

 But for chunking, the class or classes to learn take the
form of an annotation type.



Chunking training |oarameterFa

e Set the classAnnotationTypes now

e Set the dataDirectory to where you want to save your
model, and set the featureSpecURL (there's a feature
spec to get you started in the hands on materials)

e SetinstanceType. What do you think it should be?
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GATE
Sequence Spans

* sequenceSpan is only relevant when using sequence
learners

* Sequence learners classify each instance in the span by
making use of the others

* For example, a noun phrase might be more likely to
follow a determiner than a preposition, or a person
name might be more likely to follow the word “Mrs”
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Sequence Spans

« We'll try the Conditional Random Fields sequence
learner
= You don't have to use a sequence learner for
chunking though
= What do you think would be a good sequence
span?
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Sequence Spans

* A sequence span shouldn't be longer than necessary
« Sentence would be a good span for our task

* Fortunately, ANNIE creates sentence annotations for us,
so those are available to use

Set sequenceSpan to “Sentence”



<ML-CONFIG>

<ATTRIBUTE>
<TYPE>Token</TYPE>
<FEATURE>category</FEATURE>
<DATATYPE>nominal</DATATYPE>
</ATTRIBUTE>

<ATTRIBUTE>
<TYPE>Token</TYPE>
<FEATURE>kind</FEATURE>
<DATATYPE>nominal</DATATYPE>
</ATTRIBUTE>

<ATTRIBUTE>
<TYPE>Token</TYPE>
<FEATURE>length</FEATURE>
<DATATYPE>numeric</DATATYPE>
</ATTRIBUTE>

<ATTRIBUTE>
<TYPE>Token</TYPE>
<FEATURE>orth</FEATURE>
<DATATYPE>nominal</DATATYPE>
</ATTRIBUTE>

<ATTRIBUTE>
<TYPE>Token</TYPE>
<FEATURE>string</FEATURE>
<DATATYPE>nominal</DATATYPE>
</ATTRIBUTE>

</ML-CONFIG>
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Runtime Parameters for the "LF_TrainChunking 000A0" LF_TrainChunking:
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Required
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(?) algorithmParameters

String

<?> classAnnotationTypes|List

[Person, Organization ]

(?) dataDirectory

URL / file:/home/genevieve/svn/sale/talks/gate-course-jun18/module-5-ml/chunki
<?> featureSpecURL URL ‘/ file:/home/genevieve/svn/sale/talks/gate-course-junl18/module-5-ml/chunki
‘ (?) inputASName String
(?) instanceType String ‘/ Token
<?) scaleFeatures ScalingMethod / NONE
(?) seqEncoder SeqgEncoderEnum BIO
<?) sequenceSpan String Sentence

(?) trainingAlgorithm

AlgorithmClassification

‘<|

I Run this Application

Serial Application Editor Llnitialisation Parameters LAbout... I

ANNIE run in 0.485 seconds

Make sure you
have selected
the training
corpus

Run the
application!
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Chunking application

.Now switch off the training PR and create and add the chunking
application PR

.(You can switch off the annotation set transfer too)

It doesn't have a targetFeature parameter like the classification
application PR did

.You don't need to tell it what type to create because the model
knows it from training!
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Chunking application

.Set dataDirectory to the location where you told the training PR
to put the model

.Set the sequence span
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Chunking Evaluation

* We don't use a Learning Framework evaluation PR
for this chunking task
= No reason to obtain accuracy over BIOs
* More important measure how well finding named
entities

= there are more ways to be wrong
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Strict and Lenient

« “Strict” means we count an annotation as correct only if
it has the same span as the gold standard annotation

* Lenient means we allow an annotation that overlaps to
be correct, even if it isn't a perfect span match
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Strict and Lenient

Key: Location

Key: Organization
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Precision and recall

* Precision: what proportion of our automatic

annotations were correct?
» Recall: what proportion of the correct
annotations did our automatic tool create?

a (
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F-measure

* F-score is an amalgam of the two measures
= FB=(1+B2)PR/ (B2 P + R)
= The equally balanced F1 (3 = 1) is the most common
F-measure
= F1=2PR /(P +R)
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X Annotation Difference

Key doc: lft-claims-direct-lo-a...lvlKey set: IKey

Resp. doc: lft-claims-direct-lo-a...|v| Resp. set: |LearningFra... lvl Features: (2 all C’some ®none |1.0

Ivl Type:

IPerson

|v| Weight

& Compare

_ Statistics l Adjudication |

Switch to the “Document
statistics” tab

Start| End Key Features =7/Start| End| Response Featur
1549 |1557Mr-Poole {rule=PersonFinal, g...1=PersonTitleGender}|= |1549 |1557|Mr-Poole {LF_confidence=0.857
1534 |1544/Mr-Sullman {rule=PersonFinal, g...1=PersonTitleGender}|= |1534 (1544/Mr-Sullman |{LF_confidence=0.804
1201 |1211|Mr-Sullman {rule=PersonFinal, g...1=PersonTitleGender}|= |1201 {1211 Mr-Sullman |{LF_confidence=0.850
1188|1196 Mr-Poole {rule=PersonFinal, g...1=PersonTitleGender}|= |1188 |1196/Mr-Poole {LF_confidence=0.84§
916 |924 Mr-Poole {rule=PersonFinal, g...1=PersonTitleGender}|= [916 |924 |Mr-Poole {LF_confidence=0.849
901 (911 |Mr-Sullman {rule=PersonFinal, g...1=PersonTitleGender}|= |901 (911 |Mr-Sullman |{LF_confidence=0.842
710 |721 |Colin-Poole {rule=PersonFinal, g...e, rulel=PersonFull} |= |710 |721 |Colin-Poole |{LF_confidence=0.545
809 824 Simon-Ware-Lane {} -7
693 |705 Tony-Sullman {rule=PersonFinal, g...e, rulel=PersonFull} |-?
1822 |1829Sullman {} -?
1834 |1839 Poole {} -?
?- |2569 (2582 Claims-Direct/{LF_confidence=0.587
?- 12073 |2083|High-Court |{LF_confidence=0.536
?- |2173 |2186/Claims-Direct|{LF_confidence=0.476
?- /602 |615 |Claims-Direct/{LF_confidence=0.628
?2- 0 13 |Claims-Direct/{LF_confidence=0.677
2l Il [ [»
et - Racall: Pradsion Faneaciire 16 pairings have been found (0 annotations are hidden)
Partially correct: 0 Strict: 0.64 0.58 0.61 & & @'\
Y |||
Missing: 4 Lenient: 0.64 0.58 0.61
False positives: 5 Average: 0.64 0.58 0.61

Choose a document

Click on the Annotation
Diff icon
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GATE
Using Annotation Diff...

« “Correct”. the response annotation has the right feature
and span

« “Partially correct”. response has the right feature and
overlapping but not exactly matched span; this counts
as correct in the “lenient” scoring

« "Missing”: key annotation+feature is missing from the
response (a.k.a. “false negative”)

* “False positive”: response annotation+feature shouldn't
be there (a.k.a. “spurious”)
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Deep Learning
« (Gate support deep neural network
= Require install python deep learning libraries
« Supported neural network architecture
= CNN
= RNN/LSTM
= Pre-Trained word embedding
= ELMO
= BERT (in progress)



What different

 Still in development
= Beta version available

* No different algorithms
= Different architectures
= Different loss functions, optimizers
= Regularization, attention, CRF layer, GANs
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GATE

Dummy Model

» Change trainingAlgorithm

=  PytorchWrapper SEQ DR

» Using a simpe LSTM for sequence labelling

* |f you are using pytorch

= Customize your model

= data_dir/FileJsonPyTorch/gate-If-pytorch-json/gatelf

pytorchjson/modules/

* We will support more options in future
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